UPDATE ECIL-2 2007

2nd European Conference on Infections in Leukemia

2007 update of the ECIL-1 guidelines for Antifungal prophylaxis in leukemia patients, including allogeneic HSCT recipients

Johan Maertens (B, chair), Pascale Frére (B), Cornelia Lass-Flörl (Au), Werner Heinz (D), Oliver Cornely (D, co-chair)

September 28 - 29 2007, Juan-les-Pins - France

Background

- Prophylactic use of antifungals (primary prevention of invasive yeast/mould infections) has more or less become standard practice of care in neutropenic cancer patients and HSCT recipients (IDSA, CDC, ASBM).
- Almost 80 clinical trials and > 9000 patients randomized: no solid scientific conclusions available: power, design, patient selection, end point and end point definitions, new diagnostic tools and improved medical techniques ...
- Primary antifungal chemoprophylaxis (PAC) results in overuse; the choice of the appropriate drug should be guided by efficacy, safety, and drug-related 'cost', including acquisition cost, toxicity, interactions, and resistance.

European Conference on Infection In — Leukemia

Background

- New antifungal agents have or will become available : voriconazole, posaconazole.
- Evidence-based European guidelines are needed.

1st European Conference on Infection In — Leukemia

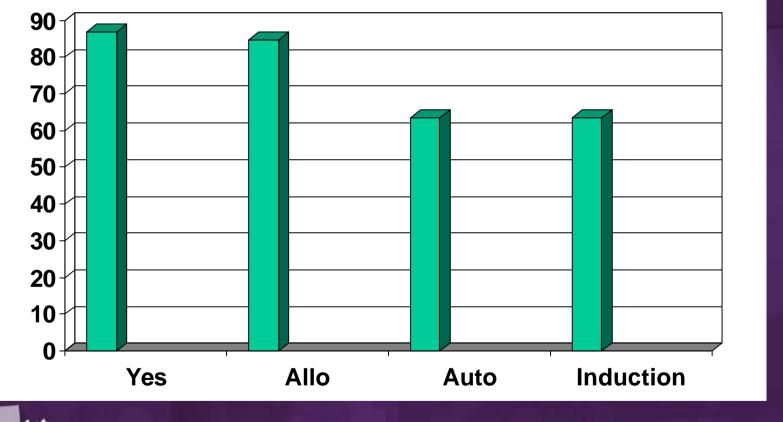
Objectives

- 1. What is (are) the patient population(s) likely to benefit from *primary* antifungal chemoprophylaxis (PAC)?
- 2. Does PAC (~ compound) has an impact on
 - 1. The incidence of invasive fungal infections: yeast vs moulds?
 - 2. Overall mortality?
 - 3. Fungal-infection related mortality?
 - 4. Use of empirical antifungal therapy?
 - 5. Toxicity?
- 3. Is PAC associated with increased resistance or selection
- 4. How long should prophylaxis be given?
- 5. Should serum levels be monitored? Optimal level?

European Conference on Infection In — Leukemia

Methods

- Questionnaire on European practices.
- Literature review
 - Search
 - Medline
 - Cochrane
 - Pubmed
 - Manual search bibliography of referenced publications
 - ICAAC, ECCMID, ASH, ASCO, and EBMT 2002-2007
- CDC grading


European Conference on Infection In — Leukemia

1. Questionnaire Summer 2005

1st European Conference on Infection in — Leukemia

Do you Use Antifungal Prophylaxis?

1st European Conference on Infection In Leukemia

Do you Use Antifungal Prophylaxis?

	Allo	Auto	Induction
Fluco	57.1	57.1	55
Itra caps	7.1	9.5	5
Itra sol	21.4	14.3	20
Itra iv	3.6	4.8	5
Vorico	3.6	4.8	5
Ambisome	3.6		
Nystatin	10.7	14.3	15
Non-abs amphoB	17.9	19.0	25
AmphoB aerosol	7.1	- 01 - -	

1st European Conference •n Infection In — Leukemia

2. Literature Review

Fluconazole (Oliver) Itraconazole (Johan) Other (Pascale & Werner)

European Conference on Infection In ------Leukemia

Does Fluconazole Prophylaxis Reduce the Incidence of IFI ?

Population	Dose	Effect	Ref	
Allogeneic	400 mg qd	Proven 18 → 7%	Slavin 1995, Marr 2000	
Autologous	400 mg qd	Unknown	Goodman 1992 (52% auto)	
AML w/o SCT	400 mg qd	None	Schaffner 1995	
	400 mg qd	Proven/probable $24 \rightarrow 7\%$	Rotstein 1999	
In allogeneic SC	T fluconazole 400) mg qd to reduce the	e incidence of IFI AI	
In autologous SC	CT fluconazole 40	0 mg qd to reduce th	e incidence of IFI CIII	
In AML w/o SCT	fluconazole 400	mg qd to reduce the i	incidence od IFI AI	
1st European Conference on Infection in Leukemia				

Does Fluconazole Prophylaxis Reduce Attributable Mortality ?

Population	Dose	Effect	Ref
Allogenic	400 mg qd	21% → 13%	Slavin 1995, Marr 2000
Autologous	400 mg qd	5.6% → 0.6%	Goodman 1992 (52% auto)
AML w/o SCT	400 mg qd	None	Schaffner 1995
Carles and	400 mg qd	4.5% → 0.7%	Rotstein 1999

In allogeneic SCT fluconazole 400 mg qd to reduce attributable mortality	AI
In autologous SCT fluconazole 400 mg qd to reduce attributable mortality	AI
In AML w/o SCT fluconazole 400 mg qd to reduce attributable mortality	CIII

1st European Conference on Infection In Leukemia

Does Fluconazole Prophylaxis Reduce Overall Mortality ?

Population	Dose	Effect	Ref
Allogenic	400 mg qd	55% ightarrow 28%	Slavin 1995, Marr 2000
Autologous	400 mg qd	None	Goodman 1992 (52% auto)
AML w/o SCT	400 mg qd	None	Schaffner 1995
BARRAN TAL	400 mg qd	None	Rotstein 1999
In allogonaia SC	T flucopozolo 10	0 ma ad to reduce	overall mortality Al

In allogeneic SCT fluconazole 400 mg qd to reduce overall mortality	AI
In autologous SCT fluconazole 400 mg qd to reduce overall mortality	CIII
In AML w/o SCT fluconazole 400 mg qd to reduce overall mortality	CIII

1st European Conference or Infection In — Leukemia

Does Fluconazole Prophylaxis Reduce the Use of Empirical Antifungal Therapy ?

Population	Dose	Effect	Ref
Allogeneic	400 mg qd	Days until empiric antifungals $18 \rightarrow 21$	Slavin 1995, Marr 2000
Autologous	400 mg qd	Unknown	Goodman 1992 (52% auto)
AML w/o SCT	400 mg qd	Empiric antifungals $33\% \rightarrow 48\%$	Schaffner 1995
2012- 1004	400 mg qd	Empiric antifungals $50\% \rightarrow 57\%$	Rotstein 1999

In allogeneic SCT fluconazole 400 mg qd to reduce empiric antifungalsAI (?)In autologous SCT fluconazole 400 mg qd to reduce empiric antifungalsCIIIIn AML w/o SCT fluconazole 400 mg qd to reduce empiric antifungalsEI

1st European Conference on Infection In Leukemia

Does Secondary Prophylaxis Reduce the Incidence of Breakthrough IFI ?

Population	Dose	Result	Ref
Allogenic	Various	Relapse rate 33% univariate risk factor analysis	Offner 1998
Autologous	?	?	?
AML w/o SCT	Various	Relapse rate 16% multivariate risk factor analysis	Cornely 2003
In allogeneic SCT secondary prophylaxis to reduce BT-IFI			C III
In autologous SCT secondary prophylaxis to reduce BT-IFI			C III
In AML w/o SCT secondary prophylaxis to reduce BT-IFI C III			

1st European Conference Infection m Leukemia

Itraconazole: meta-analysis

	N	Os/IV	IFI	IAI	FI-Mor
Gotzsche &	3	1	0.51		
Johansen			0.51		
Bow	5	3	0.61	0.91	0.78
			0.38-0.89	0.44-1.18	0.38-1.60
Glasmacher	13	6/2	0.60	0.67	0.65
Clasmachel			0.00	0.07	0.43-0.98
			0.00		0.00

1st European Conference on Infection In Leukemia

Efficacy of itraconazole correlates closely with the dose: oral solution at 400 mg/day or iv formulation at 200 mg/day (supported by in vitro studies and animal models)

Os vs. placebo	Mixed ~75% AL	Double- blind	201/205
Os vs. fluco	Mixed ~1/3 auto's	Open	218/227
Os vs. amphoB	Mixed ~70% AL	Double- blind	281/276
Os vs. amphoB	Mixed	Open	52/54
ltra* vs. fluco	Allogeneic Tx	Open	151/148
ltra vs. fluco	Allogeneic Tx	Open	71/67
	Os vs. fluco Os vs. amphoB Os vs. amphoB Itra* vs. fluco	~75% ALOs vs. flucoMixed ~1/3 auto'sOs vs. amphoBMixed ~70% ALOs vs. amphoBMixed Allogeneic Tx	~75% ALblindOs vs. flucoMixed ~1/3 auto'sOpenOs vs. amphoBMixed ~70% ALDouble- blindOs vs. amphoBMixed OpenOpenItra* vs. flucoAllogeneic TxOpen

Conference Infection Leukemia

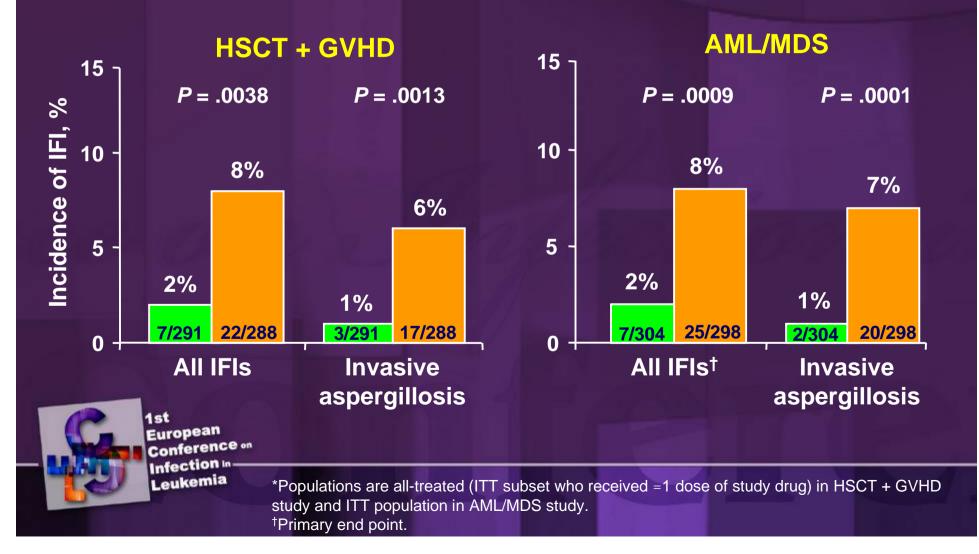
7% vs 9% (ns) -	1 vs 5 (ns) 7 vs 0 (0.024)*	ns (for AL) 34 vs 52	ns Itra > fluco
		34 vs 52	ltra > fluco
6 % vs 8 % (ns)	1 vs 5	ns	ns
5.7 % vs 5.5 % (ns)			ns
(ns)		ns	ltra > fluco
45 % vs 42 % (ns)	9 % vs 18 % (ns)		ltra > fluco
	(ns) 5.7 % vs 5.5 % (ns) (ns) 45 % vs 42 %	(ns) 5.7 % vs 5.5 % (ns) (ns) - 45 % vs 42 % 9 % vs 18 %	(ns)-5.7 % vs 5.5 % (ns)(ns)-100 mm-45 % vs 42 %9 % vs 18 %9 % vs 18 %-

Itraconazole for allo BMT

- (+) PAC continued during GvHD period
- (W,M-) Open label, non-inferiority studies
- (W-) not matched for crucial risk factors
- (W-) high incidence of *proven* IFI in fluco-arm: 25%
- (M-) unexpected drug interaction resulting in increased toxicity and differences in fungal-free survival

European Conference on Infection In Leukemia

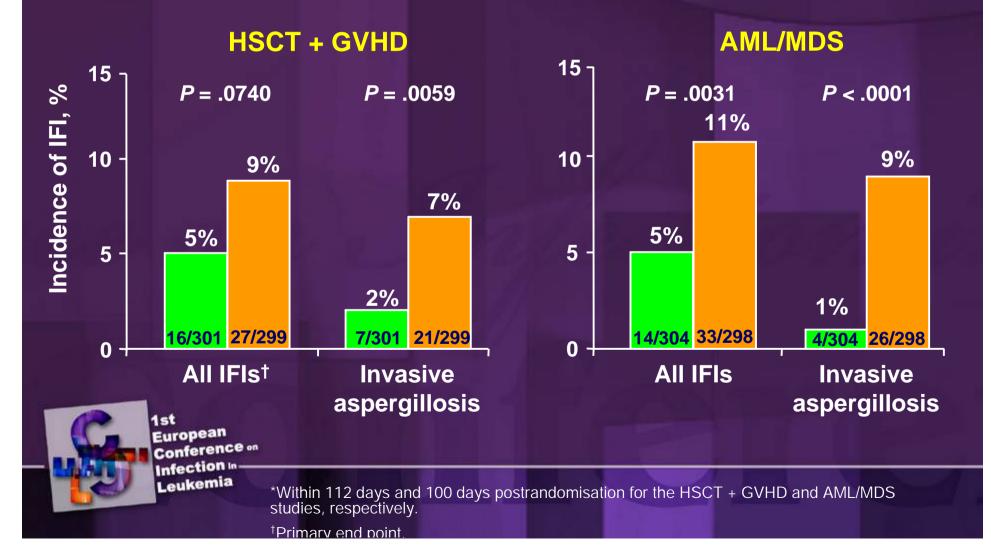
UPDATE ECIL-2 2007


Posaconazole prophylaxis studies: Design and Treatment

	Allo-GvHD/Ullmann	AML-MDS/Cornely
Design	Double blind, double dummy	Prospective, randomized, evaluator blinded
Populations	HSCT recipients with acute or chronic GVHD treated with intensive immunosuppressive therapy	Newly diagnosed or 1st relapse AML or MDS patients receiving intensive chemotherapy who are neutropenic (ANC =500 cells/mm ³) for =7 days
Treatment regimen	POS 200 mg oral suspension 3x/day or FLU 400 mg capsule 1x/day	POS 200 mg oral suspension 3x/day or standard azole (FLU 400 mg oral suspension 1x/day or ITZ 200 mg oral solution 2x/day)
Duration of treatment	Up to 112 days	Initiated with each cycle of chemotherapy for up to 84 days
Follow Up	2 months after end of treatment	100 days post-randomisation
Europ	rence on	
Infect Leuk		Ullmann et al. N Engl J Med 2007; 356: 335-347
		Cornely et al. N Engl J Med 2007; 356: 348-359

Incidence of Proven/Probable IFIs While on Treatment*

UPDATE ECIL-2 2007


🔁 POS 📒 Comparator

Incidence of Proven/Probable IFIs During Fixed Time Period*

UPDATE ECIL-2 2007

POS 📒 Comparator

Echinocandins

• Van Burik : - 882 patients, randomized, double-blind

- micafungin (50mg/d) vs fluconazole (400mg/d)
- overall efficacy : 80% mica. vs 73% fluco.
- colonisation, breakthrough infections, toxicity, mortality = identical in both arms.
- Data are sparse (Mattiuzzi, Cornely, Powles, Stute, Hiemenz, Ifran)

S.

Few patients, not exclusively high-risk patients, few proven FI

UPDATE ECIL-2 2007

Caspofungin versus itraconazole in patients with hematologic malignancies

Mattiuzzi et al. AAC 2006; 50: 143

Number of episodes	Caspo 50 mg N= 106	Itraconazole 200 N = 86	
Success	55 (52%)	44(51%)	
Proven and probable IFI	7 (6%)	5 (6%)	
Pneumonia/FUO And systemic antifungals	40 (37%)	29 (34%)	
Death	7	7	
Death related to IFI	4	2	
Discontinuation	8 (9%)	4 (4%)	

1st European Conference on Infection In Leukemia

Insufficient data to propose recommendation

due to design and statistics

Polyenes

- Oral suspension (1.5-3 g/day): not indicated
- Aerosolized amphotericin B: not indicated
 - Prospective randomized trial by Schwartz et al, Blood 1999; 93: 3654
- IV conventional amphotericin B: not indicated
 - 0.1-0.2 mg/kg/day or 0.5 mg/kg 3 times weekly
 - Nephrotoxic
 - Studies not powered to detect significant differences
- Lipid-based formulations: not indicated
 - Cost
 - Toxicity (ABCD versus fluconazole)
 - Studies not powered to detect significant differences

European Conference • Infection In — Leukemia

UPDATE ECIL-2 2007

Liposomal amphotericin B in BMT recipients

Falagas & Vardakas, Am J Hematol 2006

- 2 double-blind placebo controlled RCT
 - Kelsey 1999 and Tollemar 1993
 - Cl
- Meta-analysis:
 - Proven fungal infections: OR = 1.03 (0.03-37.55)
 - Suspected fungal infections: OR = 0.83 (0.47-1.45)
 - Mortality: OR = 1.33 (0.71-2.52)
- Lip AmB should be avoided in BMT recipients due to the lack of supporting evidence, its high cost, and common side effects....
 - large RCT is urgently needed!

European Conference

Leukemia

UPDATE ECIL-2 2007

Low-dose liposomal amphotericin B in prolonged neutropenia

Penack et al. Ann Oncol 2006; 17: 1306

Number of episodes	L-AmB 50 mg/2d N= 110	No systemic prophylaxis N = 109
Proven and probable IFI	5 (4.6%)	22 (20.2%)
Proven and probable IFI 1st neutrop. episode	5/75 (6.7%)	20/57 (35%)
Pneumonia	6	28
Systemic antifungals	24	64
FUO	30	37
Superficial FI	2	10
Death	4	9
Death related to IFI	2	8
Toxicity (ns d)	Discontinuation 2.8%	
1st European Conference on Infection In	CI	
Leukemia		

Issues in comparative studies on prophylaxis

- Insufficient sample size + many patients with a low risk of IFI + exclusion of critically ill patients: favors demonstration of equivalence !
- Underpowered to evaluate efficay in sub-groups
- Inclusion criteria should provide a high enough incidence of IFI (> 10%?) to warrant PAC
- Acute leukemia and allogeneic stem cell transplantation
 - Not all allogeneic transplant have the same risk (Anaissie)
 - AML > ALL
 - Relapsed or refractory disease > de novo
 - Mucositis
 - $-\downarrow$ cell-mediated immunity: fludarabine, steroids, GvHD
 - Colonization status: high negative predictive value (Candida)

• Aspergillus more problematic (building, season, HEPA, ..)

Issues in comparative studies on prophylaxis

- Open design
- 'Suspected' or 'possible' FI (empirical therapy) is not a valid end point
- No prespecified diagnostic protocol or minimun duration of antibacterial therapy
- Double-blind
- Study end points
 - Incidence of proven and probable invasive yeast and mould infections (EORTC/MSG criteria): requires adherence to diagnostic protocol
 - Overall mortality and fungus-attributable mortality
 - (superficial and mucosal infections)
 - Toxicity
 - Colonization and resistance

Many (not all) of these problems have been addressed in recently completed trials with posaconazole

Infection In Leukemia

Increase of microbial shift and induction of resistance during antifungal prophylaxis!

- The use of FLU prophylaxis influenced the occurrence of more non-*C albicans* infections and was accompanied by difficult to treat and more virulent colonisations and infections (Hamza 2004, Marr 2002; 2000, Uzun 1995, Pfaller 2004).
- Antifungal prophylaxis was associated with microbial shifts, as an 8+fold increase was observed in *C. glabrata* colonisation in the FLU and in *C. albicans* in the MICAFUNGIN arm (Burik 2004).
- A trend in fungal colonisation in patients receiving antifungal therapy is shown in another study: 27 out of 79 patients colonized with *Aspergillus* received AMB or ITRA therapy pre-emptively for more than two weeks (Marr 2002).
- Cancer patients with positive Aspergillus cultures who are pre-exposed to AMB or triazoles have high frequency of non – A. fumigatus and these isolates were found to be AMB-resistant (Lionakis 2005).

European Conference on Infection in — Leukemia These findings may reflect, at least, partly, antifungal selection pressure caused by antifungals in high-risk patients

Azole resistant yeasts in patients receiving antifungal prophylaxis

Period	No patients	Main results	References
1994-1997	655	FLU increased colonisations with non <i>albicans</i> species (53%) mostly <i>C. glabrata</i> and <i>C krusei</i> , 5.3% of <i>C. albicans</i> were FLU resistant	Marr 2002
1988-1992	474	FLU-prophylaxis was directly associated with fungemia by <i>C. krusei</i> (OR=27.07) and <i>C. glabrata</i> (5.08)	Abi-Said 1997
1993	253	No increase in infections and colonisation in patients receiving FLU	Winston 1993
1994-1995	300	No significant increase in breakthrough infections	Slavin 1995
1989-1990	463	Significant increase in <i>C. krusei</i> infections and colonisation by <i>C. krusei</i> (41%)	Wingard 1991
1989-1996	234	<i>C. krusei</i> fungemia increased significantly (doubled from 5- to 10%) in patients with FLU	Abbas 2000
1994-1995	274	Colonisation by non C. albicans increased in both study arms, FLU and placebo	Laverdiere 2000
1991	365	No differences were found between the study groups	Goodman 1992
1996-1999	395	Increased infection with C glabrata and C krusei were observed	Martino 2002
1999-2001	304	No difference in the incidence of IFI during the study period (FLU 16%, vs ITRA 13%)	Martino 1994
1999- 2000	882	Breakthrough infections for MICA and FLU were 1.6% and 2.4%. <i>C. glabrata</i> colonisation in the FLU and <i>C. albicans</i> in the MICA-arm increased	Burik 2004
P	1st	significantly	
	European Conferen	CC on	
19	Infection Leukemi		N.

Drug monitoring of itraconazole

- Relationship between dose, drug concentration and efficacy (Leather, Glasmacher, Buchkowsky)
- Effective prophylaxis probably needs serum concentration ≥ 500 ng/ml of itra (Poirier, Leather, Glasmacher, Buchkowsky)
- Wide inter and intra patients variations in the plasma level of itraconazole; drug interactions (Kageyama, Prentice, Cheymol)
- Itraconazole can be dosed reliably and fast

Conclusions : Drug monitoring recommended for oral formulation frequency not well defined, probably weekly

Duration of antifungal prophylaxis Clinical practice in 31 centers in 2001

N (%)	Drug	Duration			
15 (50) Flu 400mg q.d.		Neutrophil count = 500/µl			
6 (19)	Flu 100-200mg q.d.	end of immunesuppression			
4 (12)	ltra 200 mg b.i.d.	d 30 (1) end of immunesuppression (3)			
4 (12)	Amph B conv. 0,5 mg/kg q.d. (1) lipid 1-3 mg/kg q.d. (3)	Neutrophil count = 500/µl => Flu till end of immunesuppression			
2 (6)	No prophylaxis				
Trifilio et al., 200					
Infection In Leukemia					

3. Evidence-Based Recommendations

Antifungal prophylaxis in leukemia patients

- Allogeneic hematopoietic stem cell transplantation
 - Fluconazole 400 mg qd iv/oral: Al²
 - Itraconazole 200 mg IV followed by oral solution 200 mg bid: BI^{1,2,3}
 - Posaconazole 200 mg tid oral: Al^{2,3}
 - Micafungin 50 mg qd iv: CI
 - Polyene⁴ iv: CI
- Induction chemotherapy of acute leukemia
 - Fluconazole 50-400 mg qd iv/oral: Cl²
 - Itraconazole oral solution 2.5 mg/kg bid: Cl^{1,2,3}
 - Posaconazole 200 mg tid oral: Al^{2,3}
 - Candins iv: insufficient data
 - Polyene⁴ iv: CI

European Conference on Infection In Leukemia 1 may be limited by drug interactions and/or patient tolerability
 2 azoles should not be used empirically in case of prior azole prophylaxis
 3 it is recommended to monitor serum drug concentrations
 4 includes low doses of conventional amphotericin B and lipid formulations.
 The ECIL recommendation for aerosolized amphotericin B is DI

Unsolved Questions and New Areas of Research

Secondary antifungal prophylaxis has not been studied in a well-designed prospective, randomized clinical trial.

Secondary Antifungal Prophylaxis - Risk Factors for Breakthrough IFI in AML Patients with Prior IPA

Factors predisposing for BT-IFI	OR	CI
duration of neutropenia, per each day	1.043	1.008 – 1.078
high-dose cytosine arabinoside	3.920	1.120 – 12.706
number of antibiotics, per each antibiotic	1.504	1.089 – 2.086
partial response as outcome of prior IFI	4.037	1.301 – 12.524
newly diagnosed AML	3.823	0.953 – 15.340
high efficiency particulate air filter during prior IFI	0.198	0.036 – 1.089
1st European Conference on Infection In		
Leukemia Data presented by O. Corn	oly	

Data presented by O. Cornely Secondary prophylaxis registry