

1st European Conference on Infection in Leukemia

Antifungal Prophylaxis

Working Group: Johan Maertens, Oliver Cornely

Pascale Frère, Cornelia Lass-Flörl, Werner Heinz

Sept. 30th / Oct. 1st 2005 Juan-les-Pins - France

Background

- Prophylactic use of antifungals (primary prevention of invasive yeast/mould infections) has more or less become standard practice of care in neutropenic cancer patients and HSCT recipients (IDSA, CDC, ASBM).
- Almost 60 clinical trials and > 7000 patients randomized: no solid scientific conclusions available: power, design, patient selection, end point and end point definitions, new diagnostic tools and improved medical techniques, ...
- PAC results in overuse; the choice of the appropriate drug should be guided by efficacy, safety, and drug-related 'cost', including acquisition cost, toxicity, interactions, and

1st European Conference on Infection in — Leukemia

Background

• New antifungal agents have or will become available : voriconazole, posaconazole.

• Evidence-based European guidelines are needed.

1st European Conference on Infection in — Leukemia

Objectives

- 1. What is (are) the patient population(s) likely to benefit from *primary* antifungal chemoprophylaxis (PAC)?
- 2. Does PAC (~ compound) has an impact on
 - 1. The incidence of invasive fungal infections: yeast vs moulds?
 - 2. Overall mortality?
 - 3. Fungal-infection related mortality?
 - 4. Use of empirical antifungal therapy?
 - 5. Toxicity?
- 3. Is PAC associated with increased resistance or selection
- 4. How long should prophylaxis be given?
- 5. Should serum levels be monitored? Optimal level?

European Conference • Infection m Leukemia

Methods

- Questionnaire on European practices.
- Literature review
 - Search
 - Medline
 - Cochrane
 - Pubmed
 - Manual search bibliography of referenced publications
 - ICAAC, ECCMID, ASH, ASCO, and EBMT 2002-2005
- CDC grading

1st European Conference of Infection in — Leukemia

1. Questionnaire

1st European Conference on Infection In Leukemia

Do you Use Antifungal Prophylaxis? (N= 38)

1st European Conference on Infection in Leukemia

Do you Use Antifungal Prophylaxis? (N= 38)

	Allo	Auto	Induction	
Fluco	57.1	57.1	55	
Itra caps	7.1	9.5	5	
Itra sol	21.4	14.3	20	
Itra iv	3.6	4.8	5	
Vorico	3.6	4.8	5	
Ambisome	3.6	243 - Hall	1999 <mark>-</mark> 1997	
Nystatin	10.7	14.3	15	
Non-abs amphoB	17.9	19.0	25	
AmphoB aerosol	7.1			

1st European Conference on Infection in — Leukemia

2. Literature Review

Fluconazole (Oliver) Itraconazole (Johan) Other (Pascale & Werner)

European Conference Infection in Leukemia

Does Fluconazole Prophylaxis Reduce the Incidence of IFI ?

Population	Dose	Effect	Ref
Allogenic	400 mg qd	Proven $18 \rightarrow 7\%$	Slavin 1995, Marr 2000
Autologous	400 mg qd	Unknown	Goodman 1992 (52% auto)
AML w/o SCT	400 mg qd	None	Schaffner 1995
12.19	400 mg qd	Proven/probable $24 \rightarrow 7\%$	Rotstein 1999

In allogeneic SCT fluconazole 400 mg qd to reduce the incidence of IFI	AI
In autologous SCT fluconazole 400 mg qd to reduce the incidence of IFI	CIII
In AML w/o SCT fluconazole 400 mg qd to reduce the incidence od IFI	AI

1st European Conference on Infection in Leukemia

Does Fluconazole Prophylaxis Reduce Attributable Mortality ?

Population	Dose	Effect	Ref
Allogenic	400 mg qd	$21\% \rightarrow 13\%$	Slavin 1995, Marr 2000
Autologous	400 mg qd	$5.6\% \rightarrow 0.6\%$	Goodman 1992 (52% auto)
AML w/o SCT	400 mg qd	None	Schaffner 1995
	400 mg qd	$4.5\% \rightarrow 0.7\%$	Rotstein 1999

In allogeneic SCT fluconazole 400 mg qd to reduce attributable mortality	AI
In autologous SCT fluconazole 400 mg qd to reduce attributable mortality	AI
In AML w/o SCT fluconazole 400 mg qd to reduce attributable mortality	CIII

1st

European Conference m Infection m Leukemia

Does Fluconazole Prophylaxis Reduce Overall Mortality ?

Population	Dose	Effect	Ref
Allogenic	400 mg qd	$55\% \rightarrow 28\%$	Slavin 1995, Marr 2000
Autologous	400 mg qd	None	Goodman 1992 (52% auto)
AML w/o SCT	400 mg qd	None	Schaffner 1995
	400 mg qd	None	Rotstein 1999

In allogeneic SCT fluconazole 400 mg qd to reduce overall mortality	AI
In autologous SCT fluconazole 400 mg qd to reduce overall mortality	CIII
In AML w/o SCT fluconazole 400 mg qd to reduce overall mortality	CIII

1st European Conference • Infection • Leukemia

Does Fluconazole Prophylaxis Reduce the Use of Empirical Antifungal Therapy ?

Population	Dose	Effect	Ref
Allogenic	400 mg qd	Days until empiric antifungals $18 \rightarrow 21$	Slavin 1995, Marr 2000
Autologous	400 mg qd	Unknown	Goodman 1992 (52% auto)
AML w/o SCT	400 mg qd	Empiric antifungals $33\% \rightarrow 48\%$	Schaffner 1995
	400 mg qd	Empiric antifungals $50\% \rightarrow 57\%$	Rotstein 1999

In allogeneic SCT fluconazole 400 mg qd to reduce empiric antifungals	AI (?)
In autologous SCT fluconazole 400 mg qd to reduce empiric antifungals	CIII
In AML w/o SCT fluconazole 400 mg qd to reduce empiric antifungals	EI

1st

European Conference on Infection in — Leukemia

Does Secondary Prophylaxis Reduce the Incidence of Breakthrough IFI ?

Population	Dose	Result	Ref
Allogenic	Various	Relapse rate 33% univariate risk factor analysis	Offner 1998
Autologous	?	?	?
AML w/o SCT	Various	Relapse rate 16% multivariate risk factor analysis	Cornely 2003

In allogeneic SCT secondary prophylaxis to reduce BT-IFI	C III
In autologous SCT secondary prophylaxis to reduce BT-IFI	C III
In AML w/o SCT secondary prophylaxis to reduce BT-IFI	C III

1st European Conference on Infection in — Leukemia

Itraconazole: meta-analysis

	Ν	Os/IV	IFI	IAI	FI-Mor
Gotzsche & Johansen	3	1	0.5 1 0.27-0.96	-	-
Bow	5	3	0.61 0.38-0.89	0.91 0.44-1.18	0.78 0.38-1.60
Glasmacher	13	6/2	0.60 0.43-0.89	0.67 0.41-1.10	0.65 0.43-0.98

Conference on Infection in . Leukemia

Efficacy of itraconazole correlates closely with the dose: oral solution at 400 mg/day or iv formulation at 200 mg/day (supported by in vitro studies and animal models).

Menichetti	Os vs. placebo	Mixed ~75% AL	Double- blind	201/205
Morgenstern	Os vs. fluco	Mixed ~1/3 auto's	Open	218/227
Harousseau	Os vs. amphoB	Mixed ~70% AL	Double- blind	281/276
Lass-Flörl	Os vs. amphoB	Mixed	Open	52/54
Marr	Itra* vs. fluco	Allogeneic Tx	Open	151/148
Winston	Itra vs. fluco	Allogeneic Tx	Open	71/67
European Conference Infection Leukemia	Ce on In			

Invasve fungal infections Proven deep fungal	Overall mortality	Attributable mortality	Empiric therapy	Toxicity
24 % vs 33 % (0.035)	7% vs 9%	1 vs 5	ns	ns
2.5 vs 4.4 % (ns)	(ns)	(ns)	(for AL)	
10 vs 13 (ns)	- 1	7 vs 0	34 vs 52	Itra > fluco
6 vs 1 (0.06)		(0.024)*		
IA: 1.8 % vs 3.3 % (ns)	6 % vs 8 %	1 vs 5	ns	ns
2.8 % vs 4.7 % (ns)	(ns)	101		
	5.7 % vs 5.5 %		1-11	ns
1 vs 4	(ns)	W. C. R. ME.	1 100	
7 % vs 15 % (0.03)	(ns)		ns	Itra > fluco
Mold: 5 % vs 12 % (0.03)	1 1 1 1 1 1 1 1			
	45 % vs 42 %	9 % vs 18		Itra > fluco
9 % vs 25 % (0.01)	(ns)	% (ns)		
IA: 4 % vs 12 % (ns)				
Infection In Leukemia				

Itraconazole for allo BMT

- (+) PAC continued during GvHD period
- (W,M-) Open label, non-inferiority studies
- (W-) not matched for crucial risk factors
- (W-) high incidence of *proven* IFI in fluco-arm: 25%
- (M-) unexpected drug interaction resulting in increased toxicity and differences in fungal-free survial

Echinocandins

• Van Burik : - 882 patients, randomized, double-blind

- micafungin (50mg/d) vs fluconazole (400mg/d)
- overall efficacy : 80% mica. vs 73% fluco.
- Colonisation, breakthrough infections, toxicity, mortality = identical in both arms.
- Data are sparse (Mattiuzzi, Cornely, Powles, Stute, Hiemenz, Ifran)

Few patients, not exclusively high-risk patients, few proven FI

European Conference on Infection In — Leukemia

Polyenes

- Oral suspension (1.5-3 g/day): not indicated
- Aerosolized amphotericin B: not indicated
 - Prospective randomized trial by Schwartz et al, Blood 1999; 93: 3654
- IV conventional amphotericin B: not indicated
 - 0.1-0.2 mg/kg/day or 0.5 mg/kg 3 times weekly
 - Nephrotoxic
 - Studies not powered to detect significant differences
- Lipid-based formulations: not indicated
 - Cost
 - Toxicity (ABCD versus fluconazole)
 - Studies not powered to detect significant differences

1st European Conference • Infection in — Leukemia

Issues in comparative studies on prophylaxis

- Insufficient sample size + many patients with a low risk of IFI + exclusion of critically ill patients: favors demonstration of equivalence !
- Underpowered to evaluate efficay in sub-groups
- <u>Inclusion criteria should provide a high enough incidence of</u> <u>IFI (> 10%?) to warrant PAC</u>
- Acute leukemia and allogeneic stem cell transplantation
 - Not all allogeneic transplant have the same risk (Anaissie)
 - AML > ALL
 - Relapsed or refractory disease > de novo
 - Mucositis

eukemia

- $-\downarrow$ cell-mediated immunity: fludarabine, steroids, GvHD
 - Colonization status: high negative predictive value (Candida)

st • Aspergillus more problematic (building, season, HEPA, ..) uropean conference on

Issues in comparative studies on prophylaxis

- Open design
- 'Suspected' or 'possible' FI (empirical therapy) is not a valid end point
- No prespecified diagnostic protocol or minimun duration of antibacterial therapy
- Double-blind
- <u>Study end points</u>
 - Incidence of proven and probable invasive yeast and mould infections (EORTC/MSG criteria): requires adherence to diagnostic protocol
 - Overall mortality and fungus-attributable mortality
 - (superficial and mucosal infections)
 - Toxicity
 - Colonization and resistance
- Many (not all) of these problems have been addressed in recently completed trials with posaconazole

1st European Conference on Infection in — Leukemia

Increase of microbial shift and induction of resistance during antifungal prophylaxis!

- The use of FLU prophylaxis influenced the occurrence of more non-*C albicans* infections and was accompanied by difficult to treat and more virulent colonisations and infections (Hamza 2004, Marr 2002; 2000, Uzun 1995, Pfaller 2004).
- Antifungal prophylaxis was associated with microbial shifts, as an 8+fold increase was observed in *C. glabrata* colonisation in the FLU and in *C. albicans* in the MICAFUNGIN arm (Burik 2004).
- A trend in fungal colonisation in patients receiving antifungal therapy is shown in another study: 27 out of 79 patients colonized with *Aspergillus* received AMB or ITRA therapy pre-emptively for more than two weeks (Marr 2002).
- Cancer patients with positive *Aspergillus* cultures who are pre-exposed to AMB or triazoles have high frequency of non – *A. fumigatus* and these isolates were found to be AMB-resistant (Lionakis 2005).

1st European Conference on Infection in — Leukemia These findings may reflect, at least, partly, antifungal selection pressure caused by antifungals in high-risk patients.

Azole resistant yeasts in patients receiving antifungal prophylaxis

Period	No patients	Main results	References
1994-1997	655	FLU increased colonisations with non <i>albicans</i> species (53%) mostly C. <i>glabrata</i> and C <i>krusei</i> , 5.3% of C. <i>albicans</i> were FLU resistant	Marr 2002
1988-1992	474	FLU-prophylaxis was directly associated with fungemia by C. krusei (OR=27.07) and C. glabrata (5.08)	Abi-Said 1997
1993	253	No increase in infections and colonisation in patients receiving FLU	Winston 1993
1994-1995	300	No significant increase in breakthrough infections	Slavin 1995
1989-1990	463	Significant increase in C. krusei infections and colonisation by C. krusei (41%)	Wingard 1991
1989-1996	234	C. krusei fungemia increased significantly (doubled from 5- to 10%) in patients with FLU	Abbas 2000
1994-1995	274	Colonisation by non C. albicans increased in both study arms, FLU and placebo	Laverdiere 2000
1991	365	No differences were found between the study groups	Goodman 1992
1996-1999	395	Increased infection with C glabrata and C krusei were observed	Martino 2002
1999-2001	304	No difference in the incidence of IFI during the study period (FLU 16%, vs ITRA 13%)	Martino 1994
1999- 2000	882	Breakthrough infections for MICA and FLU were 1.6% and 2.4%. C. glabrata colonisation in the FLU and C. albicans in the MICA-arm increased significantly	Burik 2004

Drug monitoring of itraconazole.

- Relationship between dose, drug concentration and efficacy (Leather, Glasmacher, Buchkowsky)
- Effective prophylaxis probably needs serum concentration ≥ 500 ng/ml of itra (Poirier, Leather, Glasmacher, Buchkowsky)
- Wide inter and intra patients variations in the plasma level of itraconazole; drug interactions (Kageyama, Prentice, Cheymol)
- Itraconazole can be dosed reliably and fast

st uropean onference on nfection in _eukemia

Conclusions : Drug monitoring recommended for oral formulation frequency not well defined, probably weekly.

Duration of antifungal prophylaxis Clinical practice in 31 centers in 2001

N (%)	Drug	Duration		
15 (50)	Flu 400mg q.d.	Neutrophil count $\geq 500/\mu l$		
6 (19)	Flu 100-200mg q.d.	end of immunsuppression		
4 (12)	Itra 200 mg b.i.d.	d 30 (1) end of immunesuppression (3)		
4 (12)	Amph B conv. 0,5 mg/kg q.d. (1) lipid 1-3 mg/kg q.d. (3)	Neutrophil count ≥ 500/µl => Flu till end of immunsuppression		
2 (6)	No prophylaxis			
1st European Conference on Trifilio et al., 2001 Infection in Leukemia				

3. Evidence-Based Recommendations

1st European Conference Infection m Leukemia

Antifungal prophylaxis in leukemia patients

• Allogeneic hematopoietic stem cell transplantation

- Fluconazole 400 mg qd iv/oral: AI
- Itraconazole 200 mg IV followed by oral solution 200 mg bid: BI¹
- Posaconazole 200 mg tid oral: AI²
- Micafungin 50 mg qd iv: CI
- Polyene³ iv: CI

• Induction chemotherapy of acute leukemia

- Fluconazole 50-400 mg qd iv/oral: CI
- Itraconazole oral solution 2.5 mg/kg bid: CI¹
- Posaconazole 200 mg tid oral: AI²
- Candins iv: no data
- Polyene³ iv: CI-CII

1 May be limited by drug interactions and/or patient tolerability

ean 2 *Provisional* recommendation (data not available for the conference, grading proposed by the working group)

³ Includes low doses of AmB deoxycholate and lipid formulations The ECIL recommendation for aerosolized AmB is DI

Unsolved Questions and New Areas of Research

1st European Conference of Infection in _____ Leukemia

Unsolved Questions and New Areas of Research

 Secondary antifungal prophylaxis has not been studied in a well-designed prospective, randomized clinical trial.

European Conference Infection in Leukemia

Secondary Antifungal Prophylaxis - Risk Factors for Breakthrough IFI in AML Patients with Prior IPA

Factors predisposing for BT-IFI	OR	CI
duration of neutropenia, per each day	1.043	1.008 – 1.078
high-dose cytosine arabinoside	3.920	1.120 – 12.706
number of antibiotics, per each antibiotic	1.504	1.089 – 2.086
partial response as outcome of prior IFI	4.037	1.301 – 12.524
newly diagnosed AML	3.823	0.953 - 15.340
high efficiency particulate air filter during prior IFI	0.198	0.036 - 1.089

1st European Conference • Infection In _____ Leukemia

Data presented by O. Cornely Secondary prophylaxis registry